The Workflow of C++
Game-Development on a Series 60
Platform device

ANDREAS JAKL

BAKKALAUREATSARBEIT
Nr. 238-003-045-2

eingereicht am

Fachhochschul-Bakkalaureatsstudiengang
MULTIMEDIA TECHNOLOGY AND -DESIGN

in Hagenberg

im May 2004

Diese Arbeit entstand im Rahmen des Gegenstands

Informatik
im

Sommersemester 2004

Betreuer:

Dipl.-Ing. Dr. Christoph Schaffer

ii

Erklarung

Hiermit erklare ich an Eides statt, dass ich die vorliegende Arbeit selbst-
standig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und die aus anderen Quellen entnommenen
Stellen als solche gekennzeichnet habe.

Hagenberg, am 14th July 2004

Andreas Jakl

iii

Contents

Erklarung

1 Abstract

2 Kurzfassung
3 Introduction

3.1 Motivation
3.2 Structure of the Paper . .

Preparations

4.1 Prerequisites
4.2 Development Environment
4.3 Installation Guide

4.4 Understanding Symbian OS and Series 60
4.4.1 Application Architecture.
4.4.2 Server—Client Concept

The Game
5.1 Journey

5.1.1 Idea and Game Concept
5.1.2 Implemented Components

5.2 Importing the Project . .

5.2.1 Structure of the Game
5.2.2 Additional Dependencies.
5.2.3 Simplifying Common Tasks

5.2.4 Testing the Project
5.2.5 Useful Tips

Components

6.1 The RichText Editor Control
6.2 Location Service: Getting Cell-IDs

6.2.1 Telephony Server .
6.2.2 Getting the Cell-1D

v

iii

vi

vii

CONTENTS

6.2.3 Closing Connections
6.3 File Access e
6.3.1 Drive Path
6.3.2 FileExists.,
6.3.3 SavingFiles o 0oL
6.3.4 Loading Files
6.4 Localization
6.4.1 Menus
6.4.2 Application Text
6.5 Bitmap Handling
6.5.1 Creating the mbm file
6.5.2 Loading and Displaying Bitmaps
7 Conclusion and Future Works
7.1 Next Steps in Development
7.1.1 Game Play Improvements
7.1.2 Location—Based Extensions
7.2 Conclusion e

A Contents of the CD-ROM
A1 Term Paper
A2 Journey
A.3 Literature

A.3.1 General Symbian OS

A.3.2 Series 60 Specific

Bibliography

20
21
21
22
23
24
25
25
26
27
27
28

30
30
30
30
31

32
32
32
33
33
33

35

Chapter 1

Abstract

Even though the situation is changing, a developer for mobile phones is
still some kind of a pioneer. For platforms like Windows, vast resources
are available, whereas Symbian OS is still a rather young addition to the
list of platforms. Nevertheless, or maybe even because of that, it is more
fascinating than many other areas of software development.

Unfortunately, at the beginning new technologies are always lacking doc-
umentation. Several papers do exist that describe how to use individual
functions or give a general overview of the architecture. This term paper
targets another sector which is helpful especially to new developers and pro-
vides tactics for the workflow of programming for the Series 60 Platform.

This includes small tips that can be found out over the time. Having
them collected and described in one paper can possibly save much time.

To provide a more practical background, an innovative location-based
adventure game called The Journey has been developed. Based on this,
several components of Symbian OS and Series 60 are described, which lack
documentation or where a working implementation might be more useful
than reading the theoretical basics.

In general, this paper wants to summarize and transport experience that
was collected during development for Symbian OS, to aid new developers in
getting into an intriguing topic.

vi

Chapter 2

Kurzfassung

Selbst wenn sich die Situation dndert, ist ein Entwickler fiir Mobiltelefone
noch immer eine Art Pionier. Fiir Plattformen wie Windows sind enorme
Ressourcen verfiighar, wohingegen Symbian OS einen relativ jungen Nach-
wuchs reprasentiert. Nichtsdestotrotz, oder vielleicht gerade deswegen, ist
es faszinierender als viele andere Bereiche.

Ungliicklicherweise ist meist wenig Dokumentation am Beginn von neuen
Technologien verfiigbar. Einige Artikel beschreiben, wie einzelne Funktionen
eingesetzt werden, andere geben einen Uberblick iiber die Funktionsweise der
Architektur. Diese Arbeit visiert einen weiteren Sektor an, der besonders
fir neue Entwickler hilfreich ist, und stellt Taktiken fiir den Arbeitsablauf
der Programmierung fiir die Series 60 Plattform zur Verfigung.

Dies enthélt kleine Tipps, die man sonst mit der Zeit herausfindet. Diese
gesammelt und beschrieben in einer Arbeit lesen zu konnen, kann sehr viel
Zeit sparen.

Um einen praktischeren Hintergrund zur Verfiigung stellen zu konnen,
wurde ein innovatives ortsabhéngiges Abenteuer—Spiel namens The Journey
entwickelt. Basierend darauf werden einige Komponenten von Symbian OS
und Series 60 beschrieben, welche wenig dokumentiert sind, oder wo eine
funktionierende Referenz—Implementation sinnvoller sein kénnte, als eine
Beschreibung des theoretischen Hintergrundes.

Diese Arbeit will deshalb die Erfahrung, die wahrend der Entwicklung fiir
Symbian OS gesammelt wurde, zusammenfassen und transportieren. Das
Ziel ist es Entwicklern dabei zu helfen, sich in dieses spannende Thema
einzuarbeiten.

vii

Chapter 3

Introduction

This chapter will give you an overview on how the idea for this term paper
evolved and sum up the contents of the individual chapters.

3.1 DMotivation

Symbian OS is still rather new, compared to the other development plat-
forms which have been around for a much longer time. In contrast to those,
no vast resources are available to aid developers in doing their job. A lot of
time gets can be spent researching routines and functions, which should be
easy to implement.

There are some guides around which target issues that might arise. How-
ever, most of them are only about how to use individual functions or give a
general overview of the architecture, papers helping with the general work-
flow are scarce.

This paper tries to provide some helpful tips and methods to make devel-
opment for Symbian OS easier. Even we cover only a tiny fraction of what
may need to be done, but every small bit of information will be helpful to
the developers. Having many tips collected and described in one paper could
potentially save you a lot of time.

To provide a more practical background, a game has been developed.
A new kind of location based adventure demonstrates the technics with a
real-world background.

3.2 Structure of the Paper

At first, chapter 4 is supposed to provide a short overview of what has to be
done before development with Symbian can start. This includes an overview
of IDEs, an installation guide for the Series 60 SDK and a description of
the application concept.

CHAPTER 3. INTRODUCTION 2

Chapter 5 describes the game that was developed for this paper to
demonstrate several components of Symbian. It also gives suggestions for
the workflow and has instructions on how to get the game to run with the
SDK.

In chapter 6, a more detailed description of the most interesting concepts
implemented in the game can be found, along with source code examples.

Finally, chapter 7 provides a conclusion together with a short summary
of the most important results and facts.

Chapter 4

Preparations

This chapter gives an overview of what has to be done before the develop-
ment can start. It also presents the technologies used in this paper, gives
reasons why they have been chosen and points out possible alternatives.

4.1 Prerequisites

Knowledge of C++ and object-oriented programming is required [2].

4.2 Development Environment

Currently three integrated development environments (IDEs) have support
for development of Series 60 applications. In this paper Microsoft Visual
Studio 6 is being used, as it is widely available, well-known and the main
platform for the Series 60 SDK. Its big disadvantage is that it has no native
support for mobile development; therefore many things have to be done
manually. On the positive side, the user interface is established and efficient.
Visual Studio .NET is not supported by the SDK'. While it does work with
some tricks, the application wizard does not, and you have to do even more
steps manually.

Alternatives are Metrowerks Code Warrior?, which is more tailored to
mobile development and even supports on—device debugging and Borland
CBuilderX Mobile Edition®, which provides assistants for many cumbersome
tasks like building menus or bitmap files.

It would certainly be worth downloading the free trial versions of the
latter two programs if you have no previous experience with Microsoft Visual
C++.

'See FAQ-0835 at http://www3.symbian.com/faq.nsf

http:/ /www.metrowerks.com/MW /Develop/Wireless/Symbian /Default.htm
3http://www.borland.com /mobile/enterprise/

CHAPTER 4. PREPARATIONS 4

To develop for Symbian OS, a distribution of Perl is also required. Ac-
tivePerl from ActiveState?® is free and works fine. You also have to download
a copy of a Symbian OS SDK, in our case the Symbian OS SDK Series 60.
Currently you can get it from Siemens®, Nokia® or Sendo”. Choose the 2.0
SDK if you want to develop for a Symbian OS v7.0s phone, otherwise pick
the 1.2 SDK. Please note that the game presented in this paper has not been
tested with the SDK version 2.0.

4.3 Installation Guide

Install Microsoft Visual C++ 6 and the latest Service Pack. Choose to add
the paths to the system paths. Then install ActivePerl, also allow it to set
the system paths. It makes development easier if you map a new drive for
Symbian OS-related files. This will help you because of short paths to the
files. Additionally it allows you to transfer your projects from one PC to
another, no matter how and where the Symbian OS SDK is installed. To do
that, first create a directory like C:\Symbian\. Then create a batch file on
C:\ with the content subst Q: C:\Symbian. Put this to the Startup group
of Windows, so that the drive gets mapped automatically.

Now install the Symbiasn OS SDK for Series 60 directly to Q:\, so that
all system paths are set correctly from the beginning. Then create a di-
rectory on Q:\ called dev. This is where the source code of your projects
will go. As a final step, open Q:\epoc32\Data\Epoc.ini and correct the
paths (you have to change C:\Symbian\6.1\Series60\epoc32\wins\d to
Q:\epoc32\wins\d). In the folder Q:\Series60Tools)\ you'll find three use-
ful utilities which you should also install, called mmpclick, the Epoc Toolbar
and the Series 60 AppWizard. Read the respective text files for installation
help.

After everything has been installed, try to create a new test project using
the App Wizard [7]. Then compile and run the project. If everything worked,
a dialogue box will pop up asking you for the executable file, which is the em-
ulator (Fig. 4.1). Specify this file: Q:\epoc32\release\wins\udeb\epoc.exe.
For the next question, tell Visual Studio not to ask you again and click OK.
The emulator will load and at the end of the menu you should find your
application.

“http://www.activestate.com/
®https://communication-market.siemens.de/portal /main.aspx?pid=1
Shttp://forum.nokia.com/

"http://www.sendo.com /dev/index.asp

CHAPTER 4. PREPARATIONS)

Executable For Debug Session 2=

Flease specify the executable file for the debug session. oK |
C |
Executable file name: il

IQ:\E poc3ZiR elease\wing\udebl epoc. exe j

Figure 4.1: Dialog to locate the executable of the Windows emulator.

4.4 Understanding Symbian OS and Series 60

In Symbian OS C++ several aspects are handled differently than in stan-
dard C++. Classic examples are string handling, memory handling with
the unique model of the Cleanup Stack and handling of key press events.
To get an overview, the following documents provide a good summary of
important aspects: [15] gives you an introduction about the unique aspects
of Symbian OS. It features a good explanation of how memory handling
works and why the concepts introduced are important to follow. Finally, if
you have experience with developing in C++ for Windows, [17] explains the
differences in Symbian OS.

4.4.1 Application Architecture

There are several ways to design an application for the Series 60 Platform
[8,16]. For some applications, a dialogue based approach might be useful;
for others, the view—based architecture works best. As this paper focuses on
a game, this chapter gives a short overview of the basic application structure
for a game.

Application This class is the entry point for the application and is re-
sponsible for creating instances of the other classes. In Series 60, it is
derived from CAknApplication.

Document Stores the state of the application. If the program does not
need to have a persistent file, it is only used to launch the AppUi. In
Series 60, it is derived from CAknDocument.

AppUi Handles application—wide events like menus and is responsible for
view switching. Normally it does not have screen presence. In Series
60, it is derived from from CAknViewAppUi or CAknAppUi.

View / Controller Handles drawing to the screen and takes care of user
input. It is also possible to pass a command to the AppUi. In Series
60, it is derived from from CAknView / CCoeControl.

Of course a game needs more classes, this is covered in chapter 5.2.1.

CHAPTER 4. PREPARATIONS 6

4.4.2 Server—Client Concept

For several tasks, applications need to access servers provided by Symbian
0S. They are implemented to keep the size of the system small, as common
resources can be shared by many clients [12]. The most important example
is access to files. All applications define a pointer to an object of the class
RFs (which accesses the file server), then the framework automatically calls
Connect () so you can start to use it without creating your own instance of
this object. This call is part of the client—side API, which is implemented
as a shared library and provides access to the server. Another prominent
example is the Telephony server which can be used to do the handling of
calls, or, in the case of the game presented in this paper, to get network
information.

Chapter 5

The Game

This chapter provides an overview of the game concept, a more in-depth
look at the most interesting features and finally how to import the project
on your local computer and getting it to run.

5.1 Journey

5.1.1 Idea and Game Concept

This paper describes several concepts and workflow—tactics based on a game
that has been developed specifically to demonstrate those. This unique and
new game uses several components which are not very well documented,
or — as in the case of the Rich Text editor control — not documented at
all [17].

The game is called The Journey (see Fig. 5.1) and is a location—based
adventure game. The user plays the role of a detective that has to solve a
case, commissioned by a mysterious man. The player has to move in the
real world with the mobile phone to continue the story and to progress in
the game.

The story starts in the bureau of the detective. The next part plays
out a bar. To continue, the player has to change his location. The phone
tracks the movement using cell-ids of the GSM network and continues the
story once the player has reached a new location. Those ids are also stored
so that the game remembers locations where the player has already been
before. That functionality is being used in the game, which requires the
user to return to the place where the whole story has started to participate
in the showdown.

How far the player has progressed in the story is automatically saved;
the player can resume the game if one is active. The story is visualized using
text and a picture, which either shows a scene related to the story, or the
general location picture.

CHAPTER 5. THE GAME 8

Figure 5.1: The title screen of the Journey game. The screenshot was taken
from the Windows emulator with a Siemens SX1 skin.

5.1.2 Implemented Components

Code samples of several game components are available, and the SDK help
file [11] provides descriptions for many of the features. However, many parts
of Symbian OS are not (yet) documented. The game Journey was designed
to implement some of those, in an attempt to reduce the time needed for re-
searching how several features work. The implemented components include:

e RichText editor control: Only two samples are available which
demonstrate the usage of editor controls!, in the SDK help file [11] no
help for these powerful controls is included.

e Location tracking — using cell-ids: The header file required to get
the network information is not distributed with the Symbian OS SDK
for Series 60. However, it is part of another Symbian OS SDK and can
easily be used from within Series 60 programs. Several commercial
products like MiniGPS from Psiloc? use this functionality. Of course,
no documentation has been written for it because it is not an officially
supported API.

'Type Example: http://www.forum.nokia.com/main/1,6566,040,00.htm|?fsrParam=
3-3-/main/0,,1.32_30,00.htmI&fileID=2809;
Rich-Text Editor Example: http://www.forum.nokia.com/main/1,6566,040,00.html|?
fsrParam=2-3- /main.html&filelD=3763

2http://www.psiloc.com /?id=prod&nrp=44

CHAPTER 5. THE GAME 9

e File handling — saving, reading and deleting a game progress file:
While these functions are documented, a fully working example that
is also compatible to memory cards is hard to find.

e Localization: Supporting several languages is an important aspect
of Symbian OS applications. More than one approach is possible; this
paper provides a complete description of one of them. Most available
samples only concentrate on menus and hardly cover in—game text.

e Bitmap handling: Some tips can make life with bitmaps easier; also
color palettes are an issue which is rarely brought up.

5.2 Importing the Project

The following chapters describe how you can import the game project into
your own installation of the Symbian OS SDK for Series 60 and presents
several workflow tactics.

5.2.1 Structure of the Game

Journey has been designed with an object oriented approach. Building on
the framework provided by the App Wizard, several classes have been added
to take care of different tasks. The basic concept is the same as described
in chapter 4.4.1.

The game uses two different views, one for the menu and another one
for the game itself. While this separation is a bit more work to implement,
it has many advantages. The better organization of data and variables is an
especially important benefit for applications with a more complex graphical
menu.

The following chapters describe the classes specific to this application
and provide a fundamental understanding of how the game works.

Common Routines

Some functionality needs to be available in multiple areas of the applica-
tion, including methods to load bitmaps and to get the drive letter. This is
implemented by using distinct namespaces. The file Bitmapmethods. cpp,
provided by Nokia, encapsulates many functions which help with the han-
dling of bitmaps. JourneyFunctions.cpp contains the function to add the
drive and path of the application to a filename so that functions work no
matter where the application has been installed.

CHAPTER 5. THE GAME 10

The Menu View and Control

The classes CJourneyVMenu and CJourneyCMenu make up the routines that
provide the intro picture and partly handle the menu required to start the
game.

When the menu is being displayed, the game checks if a saved game
file exists. If one does not, the Continue Game option is dimmed and not
available.

The Game View and Control

While the view class is responsible for handling key presses, the control owns
the text box and handles the drawing of the user interface.

Game Engine

This class is responsible for the game logic. It handles the text and pictures
that are displayed. It also contains the timer functionality which is activated
when the game waits for the user to move to another cell-id. Furthermore,
it is responsible for loading and saving the game progress file, details can be
read in chapter 6.3.

Location Servicing Class

The CJourneyLocation class takes care of getting and managing cell-ids.
The game uses a concept of defined areas, which are cell-ids that have
a special meaning to the game, such as the Detective bureau or the Bar.
Building on that, the class provides functionality to wait for and check if
the user has returned to an area, and to wait until he gets to a new cell-id,
which can be defined as the next area or as no special area (Streets) if the
locations should be farther apart.

Story

The data structure containing game information and the story is prepared
by this class and is accessed by the game engine. It mainly associates the
text resource ids from the localized language files and the bitmap ids with
the iTalkInfos array.

5.2.2 Additional Dependencies

As has been outlined previously, getting the network information that con-
tains the cell-id works fine on Series 60 phones. However, the header file
with the definitions of the required functions is only part of the public SDK
for the Nokia Communicator 9200%. The file etelbgsm.h has to be ex-

3http://www.forum.nokia.com/main/0,,034-68,00.html

CHAPTER 5. THE GAME 11

tracted from it and put into the Epoc32\Include\ folder of your Symbian
OS SDK for Series 60 installation*. The Nokia 9200 runs Symbian OS v6.0
and Series 80, but the file is compatible with Series 60. While this header
enables many other functions, only the code to get the current network
information is needed here.

5.2.3 Simplifying Common Tasks

Unfortunately Microsoft Visual Studio 6 does not have native support for
Symbian OS development. While the SDK teaches the IDE how to do
many of the tasks in the right way, not everything can be done from within
the IDE, but rather from a command window. Examples are building the
project for the device or building and distributing bitmap compilation files
(see chapter 6.5). As having to type in the respective calls every time is a
tedious task, it saves a lot of time to create batch files and integrate them
into the VC6 IDE.

DoEverything.bat

During development with Symbian OS, you might experience problems that
can be solved by cleaning and rebuilding the whole project. This procedure
is also beneficial when you develop on more than one PC and want to transfer
the latest version, to make sure that everything is rebuilt using your new
sources.

To automate this task, create a file called DoEverything.bat in the
folder Q:\dev\Journey\group. It should have the following contents:

call abld.bat reallyclean all

cd ..\data
call dobitmaps.bat
cd ..\group

call bldmake bldfiles
call abld.bat makefile vc6
call abld.bat build wins udeb

The first line removes nearly all files that have been built. The next
three lines distribute the bitmap compilation files, as explained later in
chapter 6.5. The following line creates a file called abld.bat, which serves
as an entry point for the creation of workspaces and the compilation. The
following call to the just created abld.bat creates the workspace for Visual
C++ 6. Finally, the project is built for the emulator, including debug
information.

4A copy of the file is included on the CD-Rom.

CHAPTER 5. THE GAME 12

21|
Commands | Tonlbars | T ool | K.eyboard | Add-inz and Macro Files |
|Menucontents: R

Skpy++
MFC &Tracer

LCommand: Iu. “devhjourneygrouphBuildF ordrmi.bat

Arguments: I

o Lo L Le

Initial dirzctany:

Iq:\dev\ioumey\group\

OW [Prompt for arguments [Close window on exiing

Cloze

Figure 5.2: Defining a custom tool in the Microsoft Visual Studio IDE.

BuildFor Armi.bat

Building for the device and creating the installation package has to be done
manually. The batch file below, which should be created in the same direc-
tory as DoEverything.bat, handles the task:

call bldmake bldfiles

call abld.bat build armi urel
cd..\install

makesis journey.pkg

First the batch file builds the project for the mobile phone as a release
version (without debug information), then it changes to the install folder
and calls the tool to create the .sis file, which can be transferred to your
device to be installed.

IDE Integration

As both tasks described in the previous two chapters are quite common,
it is convenient to be able to call them directly from the Microsoft Visual
Studio IDE. Go to Tools— Customize...— Tools to get to the dialog shown
in Fig. 5.2. There you can define a shortcut to the BuildForArmi .bat file.
As command, enter Q:\dev\Journey\group\BuildForArmi.bat and as the
working directory Q:\dev\Journey\group\. Activate the option Use Output
Window to have the text output of any possible error directly in the IDE.

Next, go to the Keyboard tab in the same window. For the category,
choose Tools. Select the command UserTooll and assign a shortcut like
Ctrl+Alt+1.

Once this is done, to compile for the device, you just have to press the
shortcut, wait until the .sis file is created and then copy it to the device.

CHAPTER 5. THE GAME 13

21
Commands | Toolbars | Tool: Kepboard | Add-inz and Macro Files |
LCategony: Editor Assign |
Tools j IText j
Cammands: Current keps: ﬂl
UpdateFemate0utputFile - Reset Al |
UszerTonll
UserTonl11 =
ﬂsar%noﬂ% J Press new shortcut key:
s |
Description: .
Activates user-defined tool 1 Currently assigned to:
[unazsigned]

Figure 5.3: Adding a keyboard shortcut for the new custom tool in the
Microsoft Visual Studio IDE.

Leave Scan

It is convention in Symbian OS that all functions that might encounter a
problem should have an L at the end of their name to indicate the possibility
that they might leave. Symbian has released a little-known utility, called
LeaveScan, that can check if your code follows this convention. It can auto-
matically check if all function names in a source file are correct. The tool
as well as installation and usage instructions can be found in the Symbian
OS FAQ database [14]. It can also be integrated into the IDE.

5.2.4 Testing the Project

If you have a working installation of the Symbian OS SDK for Series 60
(see chapter 4.3) and have copied the header file for getting the network
information (chapter 5.2.2), copy the Journey project folder to your Q:\dev
and call its DoEverything.bat. If you have installed mmpClick, you just
have to right—click on the Journey.mmp file and choose Open VC Workspace.
Otherwise, the workspace which has been created can be found here:
Q:\epoc32\Build\Dev\Journey\Group\Journey\Wins

Press F'5 to run the project and follow the instructions of chapter 4.3.

5.2.5 Useful Tips

Menu Positioning

Applications you develop will always be added at the bottom right position
of the menu in the emulator, so that you have to navigate down every time
to run it. You can save much time by moving the icon to the upper left
corner — the setting is saved and the icon will always stay in this position.

CHAPTER 5. THE GAME 14

To do this, go to the icon, click the left softkey, choose Move and place it
as the first icon in the top left corner.

Memory Leaks

If you have a memory leak in your application, it is often difficult to find.
The emulator has an important feature that displays an error when you
exit your application in the emulator and not all memory has been freed.
You can only see this warning when you quit your application and go back
to the menu instead of just stopping the process through Visual Studio
or closing the emulator window. As it will be easier finding the error right
after you made it, it is always better to close the application in the emulator.
Otherwise you might see the warning several hours later and have no idea
where the memory leak might come from.

Extended Error Information

When your application crashes, you only get the message ” Program Closed”.
However, both the device and the emulator are capable of displaying an
extended error information, which might be useful in some cases. To ac-
tivate this, you have to create an empty file called ErrRd in the folder
epoc32\Wins\c\system\Bootdata. On the device you can make the same
empty file in C:\system\Bootdata. If you do not know how to create a file
on the device, you can also install ExtendedErr.sis, which can be found
at [1].

Enabling Syntax Highlighting for Symbian OS Keywords

The Symbian OS SDK comes with many new keywords and common classes
that are not known to the Visual Studio IDE by default. However, by
supplying it with a list of user defined keywords, it is possible to have those
commands displayed in another color. Not only does this make the code
easier to read, it also helps to prevent typing errors.

EMCC Software has provided a file which contains all keywords. Put
the file usertype.dat (available on the CD-Rom) into the same directory
as msdev.exe (usually:

C:\Program Files\Microsoft Visual Studio\Common\MSDev98\Bin)
and restart the IDE. By default, those keywords will be displayed in blue, to
choose a more discrete color, go to Tools— Options— Format— Colors— User
Defined Keywords and choose a color like dark purple [3].

Displaying Strings in the Visual C++4 Debugger

Due to memory limitations, strings are handled differently in Symbian OS.
Therefore, the debugger that is integrated into the Visual Studio IDE does

CHAPTER 5. THE GAME 15

not know the internal structure of Symbian OS descriptors. It does display
some information, but the most important thing is missing — the text itself.
Luckily, the IDE can be taught what to display. Open the file called
AutoExp.dat in the main directory of your Visual Studio installation (de-
fault:
C:\Program Files\Microsoft Visual Studio)\Common\MSDev98\Bin)
and copy /paste the text from the SymbianAutoExp.dat file (available on the
CD-Rom) to the end of your AutoExp.dat. After restarting Visual Studio,
you will be able to see the contents of descriptors as normal text in the
debugging windows [5].

Chapter 6

Components

The game called The Journey demonstrates the use of several components
which are not well documented. This chapter provides a description of the
key factors that are necessary to implement them. The complete source
code can be found on the CD-Rom.

6.1 The RichText Editor Control

The RichText component is well suited for displaying formatted text as
it is powerful and handles many aspects automatically. It is also capable
of displaying the scrollbar indicators in the softkey bar at the bottom of
the screen. Using the interface it provides, it would not be very difficult
to implement an editor where you can choose your own fonts, styles and
alignment.

In many situations, only static text is needed, for example in an about
box, or, as in the case of The Journey, to display the game text. The
RichText editor has the advantage that the text is automatically wrapped
and you do not have to take care of that yourself. The class CJourneyCGame
includes this control.

Many border styles are available. To use them you have to include an
extra library called egul.lib in your .mmp file. When creating it, the border
has to be specified. In this example, no border is being used (the default
would be 1 pixel):

iTextBox = new (ELeave)
CEikRichTextEditor (TGulBorder: :ENone) ;

Then it is constructed and its flags are set using the command below —
in this case they are defined in a way to make the box read only and to hide
the cursor.

TInt edwinFlags = EEikEdwinInclusiveSizeFixed|

16

CHAPTER 6. COMPONENTS 17

EEikEdwinNoAutoSelection|
EEikEdwinDisplayOnly |
EEikEdwinReadOnly|
EEikEdwinLineCursor |
EEikEdwinNoHorizScrolling]|
EEikEdwinAvkonDisableCursor;
iTextBox->ConstructL(this, 4, O, edwinFlags,
EGulFontControlAll, EGulAllFonts);
iTextBox->SetAknEditorFlags(edwinFlags) ;

The scrollbar frame in the softkey bar can now be activated using these
calls:

iTextBox->CreatePreAllocatedScrollBarFramel () ;
iTextBox->ScrollBarFrame () ->SetScrollBarVisibilityL
(CEikScrollBarFrame: :EOff, CEikScrollBarFrame: :EAuto);

Next, the hierarchy is defined — the container window and the observer
are set to the owning class, in our case CJourneyCGame. After that, the
position, size and background color are defined. Finally the control gets the
focus.

// Sets the containing window for the control
iTextBox->SetContainerWindowL (xthis) ;
iTextBox->SetObserver (this) ;

// Set the size of the textbox
iTextBox->SetExtent (TPoint (10, 106), TSize(156, 80));
// The background color can be specified quite easily
iTextBox->SetBackgroundColorL (TRgb(74, 56, 28));
iTextBox->SetFocus (ETrue) ;

The last step to getting a good looking text box is to set the font and
text color. If they are set at the beginning, the text we will put into the
control later will automatically be displayed with the style defined now. Of
course it would be possible to use more than one style in a text block using
this control. For example in the game this could be useful to format text in
direct speech in italics.

// Set font type

TFontSpec fontspec = LatinPlainl2()->FontSpecInTwips();

TCharFormat charFormat(fontspec.iTypeface.iName,
fontspec.iHeight);

TCharFormatMask charFormatMask;

// Set text color
charFormat.iFontPresentation.iTextColor = KTextColor;

CHAPTER 6. COMPONENTS 18

// Activate the attributes
charFormatMask.SetAttrib(EAttColor) ;
charFormatMask.SetAttrib(EAttFontTypeface);
charFormatMask.SetAttrib(EAttFontHeight) ;

// Apply font to the whole text

iTextBox—>SelectAl1L();
iTextBox->ApplyCharFormatL(charFormat, charFormatMask) ;
iTextBox->ClearSelectionL();

Defining font parameters works using the TCharFormat class. Several
individual attributes of it can be set, then a mask has to be defined where
the attributes you have just set are activated. Finally you can apply the
character format together with the mask to a selected text.

Setting the text is straightforward, a &TDesC has to be passed to the
class, which takes care of text formatting and displaying automatically. It is
very important to set the cursor position to the beginning of the line before
replacing the text. Otherwise, if the new text is shorter than the previous
one and the cursor position is be outside of the new text, the function will
leave.

iTextBox->SetCursorPosL(0, EFalse);
iTextBox—>SetTextL (&textResource) ;

Finally, scrolling should be done when the according key press is regis-
tered [6]. There is a function called MoveDisplayL (), however, there doesn’t
seem to be a method to easily check when the bottom of the text has been
reached and no scrolling down would be possible anymore, because at that
point any further calls to the function will leave. Also the scrollbar would
not be updated. Because of that, scrolling should to be done using the
(invisible) cursor.

iTextBox—->MoveCursorL(TCursorPosition: :EFPageDown, EFalse);
iTextBox->MoveCursorL (TCursorPosition: :EFLineBeg, EFalse);
iTextBox->UpdateScrollBarsL();

In conclusion, using the RichText editor control is not very difficult when
information about how to use it is available. However, finding instructions
is still difficult. Hopefully, these instructions might help and explain some
of the foundations.

6.2 Location Service: Getting Cell-IDs

Retrieving the network information and, as part of it, the cell-id only works
when the etelbgsm.h file is available (see chapter 5.2.2). You need to link
your application to gsmbas.lib and etel.lib (defined in the .mmp file).

CHAPTER 6. COMPONENTS 19

6.2.1 Telephony Server

For preparation, several steps are required. First, a connection to the tele-
phony server has to be opened (a short overview about the server—client
model can be found in chapter 4.4.2). The code should also include proper
error handling as opening a connection may fail. These parts have been
omitted in this paper, they can be found in the full source code of The
Journey, which is available of the CD—Rom.

_LIT(KTsyName, "phonetsy.tsy");
iTelServer.Connect();

// Load the profile of the phone
iTelServer.LoadPhoneModule (KTsyName);

// Get the phone name
RTelServer: :TPhoneInfo phonelnfo;
iTelServer.GetPhoneInfo(O, phonelnfo);

// Open the phone by name
iPhone.Open(iTelServer, phonelnfo.iName);

After the connection has been established, the LoadPhoneModule () func-
tion has to be executed. The TSY file that is loaded is an extension module
to the telephony server that handles the interaction between this server and
a particular telephony device or family of devices [11].

Next, we fetch phone information, which also contains the name. On the
emulator it is called Calypso, the codename of the Nokia 7650.

Finally the additional header file is needed for the first time. iPhone of
class type RBasicGsmPhone is being opened, with the telephony server and
the name of the phone as arguments.

6.2.2 Getting the Cell-ID

If all calls succeed without returning any error code, the network info can
be retrieved using one simple function:

MBasicGsmPhoneNetwork: : TCurrentNetworkInfo ni;
iPhone.GetCurrentNetworkInfo(ni);

If the call succeeded without returning an error code (again, error han-
dling has been omitted in the printed source code), ni will be filled with
some interesting information:

Cell-id Every GSM mast sends out its own cell-id. The number stored in
this unsigned integer variable is therefore the code of the nearest mast.

CHAPTER 6. COMPONENTS 20

your current location.

Figure 6.1: A screenshot of the game waiting for the user to move to another
location.

MCC Mobile Country Code. The code defining the country in which a
mobile subscriber resides [13].

MNC Mobile Network Code. The MCC and MNC together are a unique
identification number of the network the phone is logged into.

Location area A location area normally consists of several base stations.
It defines an area where the mobile can move without notifying the
network about its exact position [13].

Network name Available in a short and a long version, this is name of
the network the phone is currently logged into. It is the same network
name that is displayed on the idle screen of most mobile phones.

The emulator will always return the cell-id 0. To test the application
in the emulator, you can set a breakpoint after you fetch the ID and then
change the content of the variable where you store it through the IDE.

For the Journey game, only movement is important (Fig. 6.1), not full
location tracking. To achieve this, the area id of the network should maybe
be taken into account as well.

6.2.3 Closing Connections

When you do not need to gather information anymore, or when your ap-
plication is closed, you have to close the connection to the servers. This is
done by the following piece of code:

iPhone.Close();
iTelServer.UnloadPhoneModule (KTsyName) ;
iTelServer.Close();

CHAPTER 6. COMPONENTS 21

6.3 File Access

On mobile devices, applications can not be sure they will be exited through
the menu. For example it might be that the device switches off because of
an empty battery. Therefore, frequently saving the game progress is very
important, especially in an adventure game. Part 2 of the high score tutorial
has been very helpful for the design of a game progress file [4].

In Journey, the game is saved automatically every time the player pro-
gresses in the game. This behavior has to have four key functions:

Drive path Users should be able to install the applications on the memory
card, as space on the device itself is limited. You have to make sure
that the game is compatible with that, and that the drive letter is
retrieved during runtime. Giving users a choice about the installation
location is enabled by using a ! instead of the drive letter in the .pkg
file.

File exists To be able to decide whether to offer the additional option to
continue the game or only to start a new game, a function has to check
whether a progress file already exists.

Saving In the case of The Journey, all game data has to be saved that is
needed to put the game into exactly the same state as it had been
when the user left the game.

Loading When loading a previously saved game, everything must be back
to the correct state again. For example, the timer might have to be
restarted.

For the following examples the filename has been set globally using:
_LIT(KFileStore, "Progress.dat");

6.3.1 Drive Path

It is very convenient to have a function that adds the full system path of
the application to a filename. To provide this functionality outside of the
AppUi class, several header files have to be included.

#include <eikenv.h>
#include <bautils.h>
#include <eikappui.h>
#include <eikapp.h>

The following function requires the filename as the first parameter and
puts the resulting string consisting of the filename and its full path into the
second parameter (pass by reference).

CHAPTER 6. COMPONENTS 22

There is no direct function to retrieve the application path, so first it is
necessary to get the full name and path of the application DLL. Based on
this string, a useful utility function is able to extract only the drive letter
and the path, removing the application name from the string. Finally, the
filename can be appended to the path.

const void AppendFullPath(const TDesC& aFilename,
TFileName& aFullName) {
TFileName appNamePath;

// Get the full name and path of the application

appNamePath = CEikonEnv::Static()->EikAppUi()->
Application()->AppFullName() ;

// Gets the drive letter and path from a file name.

aFullName = BaflUtils::DriveAndPathFromFullName
(appNamePath) ;

// Always use c drive letter for the emulator.
#if defined(__WINS__)
aFullName.Replace(0,1,_L("c"));

#endif

// Combine the path and the filename
aFullName.Append(aFilename) ;

6.3.2 File Exists

One method to check if a file exists is to try to open it in read only mode
and check for a file not found error code (KErrNotFound). Because of the
client—server model of file access in Symbian OS, the file server session (RFs
iFileServerSession;) does not have to be created like an object, it is just
necessary to connect to it (iFileServerSession.Connect () ;) and close the
connection (iFileServerSession.Close();) when it is no longer needed.
This is done outside of the loading function.

TBool GameProgressFileExists() {
TBool returnVar = ETrue;
TFileName fullName;
AppendFullPath(KFileStore, fullName);

// Try to open the file

RFile checkFile;

TInt errorCode = checkFile.Open(iFileServerSession,
fullName, EFileRead);

CHAPTER 6. COMPONENTS 23

// If the file is not found, return false.
if (errorCode == KErrNotFound)
returnVar = EFalse;

// Close the handle to the file
checkFile.Close();

return returnVar;

6.3.3 Saving Files

The current state of the game will, most of the time, be managed in RAM
memory. For this case, using streams and stores is a good approach for
easily writing it to a file. This method does not require taking care of file
management directly. First, a file store is created, which is equivalent to
the file itself. A stream can be put into it; it would also be possible to have
more than one of them in one store. This example uses a direct file store,
which does not allow modifying the data once it has been written — it can
only be replaced by a new file. This behavior is fine for the needs of saving
the current state of the game.

Once the store and the stream are ready, data can be written into
the stream. Several functions are available to write variables of different
data types. It is also possible to save the data of objects to a file store,
the process is called externalizing. You have to implement two functions
called ExternalizeL (RWriteStream& aStream) for writing to the stream
and InternalizeL (RReadStream& aStream) to read the saved data from
the stream again and then save it in the member variables of the class. In
those, you have to take care of writing all necessary data to the stream. Ex-
ternalizing the object works by stream << my0bj;, Internalizing is equally
simple by using stream >> my0bj;.

When everything has been written to the stream, the changes have to
be committed first to the stream and then to the store, where the stream is
set as the root stream.

void SaveGameProgressL() {
TFileName fullName;
AppendFullPath(KFileStore, fullName);

// Create a direct file store that

// will contain the game progress

CFileStorex store = CDirectFileStore::ReplacelC
(iFileServerSession, fullName, EFileWrite);

store->SetTypeL (KDirectFileStoreLayoutUid) ;

CHAPTER 6. COMPONENTS 24

// Create the stream
RStoreWriteStream stream;
TStreamId id = stream.CreateLC(*store);

// Write game progress
stream.WriteInt16L(iVar);
//

// Commit the changes to the stream
stream.CommitL () ;
CleanupStack: :PopAndDestroy(); // stream

// Set the stream in the store and commit it
store->SetRootL(id) ;

store->CommitL () ;

CleanupStack: :PopAndDestroy(); // store

6.3.4 Loading Files

Loading files works like saving files. The store has to be opened and then the
root stream has to be found. From it, the variables can be read in exactly
the same order as they were saved.

void LoadGameProgressL() {
TFileName fullName;
AppendFullPath(KFileStore, fullName);

CFileStore*x store = CDirectFileStore: :0penlLC
(iFileServerSession, fullName, EFileRead);

// Open the data stream inside the store
RStoreReadStream stream;
stream.OpenLC(*store, store->Root());

// Read all the data
iVar = stream.ReadInti16L();
//

// Remove from cleanup stack (store, stream)
CleanupStack: :PopAndDestroy(2) ;

CHAPTER 6. COMPONENTS 25

6.4 Localization

As the name indicates, mobile phones are intended to be used in multiple
locations. Therefore it is important to prepare applications for the global
market and provide support for different languages. This should be consid-
ered right from the beginning, and no text should be hard coded in source
files. Care should also be taken about varying text lengths in different lan-
guages [8].

6.4.1 Menus

Two areas of the application have to be customized — the menus (if the game
uses the standard system menu and does not have its own implementation)
and the text in the game itself. Menus are straightforward to do, however
this is a lot of work if everything has to be done manually. IDEs such as
Borland C++BuilderX support language localization and automate a large
part of the work. The following steps are necessary to set it up manually.

1. In the mmp file of the project, the languages have to be defined. Ex-
ample for English and German: LANG 01 03 — a list of the languages
Symbian OS supports and their respective code numbers can be found
in the definition of TLanguage in the file e32std.h.

2. The resource file (.rss) of your application has to include a .1loc file.
For the game this would be: #include "journey.loc"

3. The .loc file can either directly define the strings of the individual
languages, or include an external file depending on the current lan-
guage. For bigger applications that use more text, this method is
recommended as it makes it easier to give the individual language files
to translators. The content should look like this:

#if defined (LANGUAGE_01) /* English */
#include "Journey.1l01"

#elif defined(LANGUAGE_03) /* German */
#include "Journey.103"

#else /* Default to UK English */
#include "Journey.101"

#endif

4. The individual .lzz files finally define the strings for the individual
languages. Example:

#define gqtn_menu_continue "Continue Game"
#define qtn_menu_startgame "Start New Game"

CHAPTER 6. COMPONENTS 26

5. These strings are directly used in the menu definitions of the .rss file.

RESOURCE MENU_PANE r_journey_viewl_menu

{
items=
{
MENU_ITEM { command=EJourneyCmdContinueGame;
txt = gqtn_menu_continue; 1},
MENU_ITEM { command=EJourneyCmdStartGame;
txt = qtn_menu_startgame; }
s
3

The compiler will automatically create multiple resource files with the
endings .r01, .r03, etc.

6. Finally, the application should only be installed the phone with the
correct language. If available, the installation will automatically use
the language which corresponds to the current phone language. The
.pkg file based on which the .sis file is created has to define which
files should be copied for the individual languages. An example:

{
"\Epoc32\release\armi\urel\Journey.r01"
"\Epoc32\release\armi\urel\Journey.r03"
} -"!:\system\apps\Journey\Journey.rsc"

The package file also has to specify the title of the application for all
languages. If you use the additional line specifying that the installa-
tion should only be compatible to a specific version of Series 60 (for
example v(0.9 and higher, meaning that it is compatible with all Series
60 phones), this string also has to be provided multiple times — one
for each language:

#{"Journey", "Journey"}, (0x06EE1210),1,0,0

(0x101F6F88), 0, 0, 0,{"Series60ProductID",
"Series60ProductID"}
6.4.2 Application Text

The localized strings defined in the resource files can also be accessed from
within the application, using resource readers.

1. Again, the text has to be specified as above in the .1lzz files. Those
defines have to be referenced in the .rss file and are put into TBuf’s:

CHAPTER 6. COMPONENTS 27

RESOURCE TBUF r_areaname_00 {buf
RESOQURCE TBUF r_areaname_01 {buf

qtn_areaname_00; }
qtn_areaname_01; }

2. Those resources can be read and be put into TBuf’s from within the
application. To make this call available in your own class, it has
to be derived from CCoeControl (requires the header file: #include
<coecntrl.h>).

TBuf<30> textResource;
CEikonEnv: :Static()->ReadResource (textResource,
R_AREANAME_00) ;

6.5 Bitmap Handling

Series 60 provides tools to easily put multiple bitmap files into .mbm files
and to access those from within the application. While being quite straight-
forward to use, they have several disadvantages:

e The pictures are stored as RLE compressed bitmaps, a compression
algorithm which does not create the smallest possible files.

e Bitmaps using 256 colors automatically get a standard palette assigned
and do not keep their own. It is possible to specify an extra palette
file with a list of the colors, which is then global to the whole .mbm
file. However, standard graphical applications can not export the color
palette of an image into the format required by the conversion utility
from Symbian.

6.5.1 Creating the .mbm file

Still, if only a few bitmaps are required, this method is simple to use and
getting the bitmaps from within the application does not take much time.
It is possible to specify the parameters for the creation of the .mbm file in
the .mmp file. However, you have more control over the process and its re-
creation, if you write your own batch file. Call this file dobitmaps.bat and
place it together with the bitmaps in the \data\ directory or your project.

Initially, the bmconwv utility is called. The first parameter specifies that a
header file called journey.mbg should be generated, containing an enumer-
ation of the bitmaps stored in the .mbm file. The second parameter defines
the name of the .mbm file to create. After that, add the individual bitmaps
that should be part of the file. /c12bmpFileName.bmp specifies a 12-bit
color bitmap. /c8bmpFileName.bmp an 8-bit file with the standard palette,
unless an extra palette file is specified with /pPaletteFile. Masks should
be 2-bit files (/2bmpFileName.bmp), using only black and white.

CHAPTER 6. COMPONENTS 28

bmconv /hjourney.mbg journey.mbm /cl2InterfaceTop.bmp ->
/cl2InterfaceBottom.bmp /c8areaStreets.bmp

The two files are generated in the current directory and have to be copied
to the right paths so that they can be found from within the application.

copy journey.mbm Q:\epoc32\Release\armi\urel\journey.mbm
copy journey.mbm Q:\epoc32\Wins\c\System\Apps\Journey\ ->
journey.mbm

copy journey.mbg Q:\epoc32\include\journey.mbg

6.5.2 Loading and Displaying Bitmaps

Getting the bitmaps out of .mbm files is easy and fast. The header file created
by the conversion utility has to be included; it contains an enumeration of
the bitmaps that are inside the .mbm file. Open it to see how your bitmaps
are called. Add the following two lines to the class where you want to load
and display bitmaps:

#include <journey.mbg> // Bitmap enumeration
_LIT(KJourneyMbm, "Journey.mbm");

To be able to display them on the screen, you have to create a bitmap
object out of them. The Nokia graphics examples that come with the
Symbian OS SDK for Series 60 use a collection of functions in the file
bitmapmethods.cpp. The function CreateBitmapL creates an instance of
the CFbsBitmap# class that we need. It then also adapts the color—depth
to the display—depth of the device. Doing this only once when loading the
image is useful because otherwise it would have to be converted every time it
is displayed. This file is part of the game and can be found on the CD—Rom.

TFileName fullName;

AppendFullPath(KJourneyMbm, fullName);

// Load the bitmap

CFbsBmp* iBmp = NBitmapMethods: :CreateBitmapL (fullName,
EMbmJourneyJourneytitle) ;

Once the file is loaded, displaying it is easy. To use it in the Draw()
method of a control, you just have to copy the bitmap to the screen using
BitBlt (). If you want to update the display with the new graphics in
another place of your application, you have to force a redraw. The following
code defines the redraw rectangle with the size of the picture and a fixed
position. Next, this rectangle is invalidated, telling the Symbian OS window
server that its content is outdated. Right after this, the program starts a
redraw of the area and then copies the bitmap to the screen. Finally, it tells
the window server that redrawing is finished.

CHAPTER 6. COMPONENTS 29

TPoint bmpPos(10, 29);
TRect redrawRect (bmpPos, iCurLocationBmp->SizeInPixels());

CWindowGc& gc = SystemGec();
gc.Activate(Window()) ;

Window() .Invalidate(redrawRect) ;
Window() .BeginRedraw(redrawRect) ;

// Draw it onto the screen
gc.BitBlt (bmpPos, iBmpIntroScreen);

Window() .EndRedraw() ;
gc.Deactivate();

For games which require a frequently updated graphical view, it is rec-
ommended to use a background buffer bitmap of the size of the screen where
all the drawing goes to. Only once a loop in the game is finished, this bitmap
is copied to the screen. To get the best performance, it is possible to bypass
the Symbian OS window server by using Direct Screen Access. An example
demonstrating this technique is available for download at Forum Nokia'.

'http://www.forum.nokia.com/

Chapter 7

Conclusion and Future
Works

7.1 Next Steps in Development

7.1.1 Game Play Improvements

The main purpose of the game presented in this paper is to demonstrate
some aspects of Symbian OS and Series 60 coding. To publish the game,
more interactivity would have to be added. The player should not be forced
to go to the locations one after another but be able to move freely around,
have an inventory and generally more freedom in what to do.

In games, it is generally good to have your own graphical menu instead
of using the default menu provided by Symbian OS [10]. This would also
be one of the next steps in the development of The Journey. Of course the
general appearance of the game could be enhanced by using sound effects
or a custom font [9].

7.1.2 Location—Based Extensions

In the current version of the game, only the movements of the person playing
are tracked. Even more interesting would be to connect it with real locations.
However, this would require finding and writing down cell-ids for every
city and network provider. Additionally, cells are rather large. Network
operators are able to detect a more accurate position by not only analyzing
the id of the strongest signal, but also of the other base stations near the
mobile phone. This, connected with their internal database of base stations,
enables real position detection. Unfortunately, through Series 60 it is only
possible to get the id of the nearest mast. Also, the databases with the
location of the cell-ids are not public. A game like that would therefore
require the cooperation of network operators.

30

CHAPTER 7. CONCLUSION AND FUTURE WORKS 31

In the future, a game with this concept will be interesting when the
assisted global positioning system (A-GPS) is more widely available in mo-
bile phones. This would allow an accurate detection of the position of the
phone. Coupled with location of companies this would also be an interesting
alternative for marketing activities.

7.2 Conclusion

The mobile telecommunications world is progressing fast. There has not
been much time between the introduction of color screens and the first 3D
games for mobile phones. Comparing that to the world of the traditional
PC, which also had a quick development, this is even more fascinating. It
requires daily work to be able to keep up with the latest developments in
this sector.

This does not leave much time to produce a lot of documentation; it
took quite a while until the first Symbian OS book was released. When
developing, it is not uncommon to spend a lot of time researching on the
Internet how to use certain functions.

With more and more examples becoming available to the developer com-
munity, this process is slowly becoming easier. This paper provides an in-
troduction for several aspects of Symbian OS and Series 60 and also tries
to help by presenting several workflow tactics and tools. Instead of finding
those by chance over time during the time development, an overview is given
in one convenient place: this paper.

Appendix A

Contents of the CD-ROM

File System: Joliet

Mode: Single-Session (CD-ROM)

A.1 Term Paper

Path: /

symbiangames.pdf . . .
symbiangames.dvi
symbiangames.ps

A.2 Journey

Path: /Journey/

journeysis

Path: /dev/Journey/
aif/ ..o

Paper (PDF-File)
Paper (as DVI-File, without graphics)
Paper (PostScript-File)

The installation file of the game for Symbian
0S8 Series 60 devices.

Application icons and .aif—file (Application
Information File).

Resource files and bitmaps.
Documentation of the source code.

Contains the project information file and
batch files to build the project.

Header files for the game and localized text
files.

Source code files.

32

APPENDIX A. CONTENTS OF THE CD-ROM 33

install/

A.3 Literature

The package information file which contains
information about creating the .sisfile
(Symbian Installation System).

A.3.1 General Symbian OS

Path: /Literatur/General/
Codingldoms/

DisplayStringsinVC/ . .
ExtendedErrors/
HighScoreTutorial/ . . .
LeaveScan/
SendoGlossary/

SymbianWindows/ . . .

SyntaxHighlighting/ . .

A very good explanation of memory
management in Symbian OS [15]

Describes how to display Symbian OS
descriptors in the Visual Studio IDE [5]

.sis file to display extended error
information on the device plus a copy of the
page from [1]

Copy of the High Score Tutorial as .pdf [4]

The Symbian LeaveScan utility and usage
instructions [14]

Copies of the quoted pages of the Sendo
Glossary [13]

An overview of issues a Windows developer
might face when working with Symbian

0OS [17]

A guide on how to enable syntax highlighting

for Symbian OS keywords in the Visual
Studio IDE [3]

A.3.2 Series 60 Specific

Path: /Literatur/Series60/
DesigningApplications/

EditorExamples/

FrameworkHandbook/ .

GameProgramming/ . .

Provides an overview of the architecture of
Series 60 C++ applications [8]

Two examples from Nokia, demonstrating
the Editor controls

Covers several aspects of Series 60, including
scrollbars, quitting applications or the
applications of different architectures [6]
Aspects of Symbian OS which are useful for
developing games are presented in this
document [9]

APPENDIX A. CONTENTS OF THE CD-ROM 34

GettingStarted/ A guide that helps with creating the first
Series 60 application [7]

Tools/ An overview of the tools that come with the
Series 60 SDK

UsabilityGuidelines/ . . A detailled overview of guidelines that games

should follow [10]

Bibliography

[1]

BENK: Display the extended panic code in Emulator or Device. URL,
http://www.newlc.com /article.php3?id_article=150, August 2003. Copy
on CD-Rom; ExtendedError.pdf.

BREYMANN, U.: C++ FEinfiihrung und professionelle Programmierung.
Carl Hanser Verlag, 6th ed., 2001.

EMCC: Enabling Syntax Highlighting for Symbian OS Keywords. URL,
http: //www.emccsoft.com/devzone/cvs.html, 2004. Copy on CD-Rom,;
EnablingSyntaxHighlighting.pdf, usertype.dat.

NEWLC: Creation of a high score table. URL, http://www.newlc.com/
article.php3?id_article=30, March 2003. Copy on CD-Rom; HighScores_*.
pdf.

NEwWLC: How to display Symbian strings and descriptors in Visual
C++ debugger. URL, http://www.newlc.com/article.php3?id_article=
274, January 2004. Copy on CD-Rom; NewlLC_DisplayStringsInVC.pdf,
AutoExp.dat.

NoOKIA: Series 60 Application Framework Handbook. URL,
http://www.forum.nokia.com/main/1,6566,21,00.htmlI?fsrParam=
1-3-/main/0,6566,21,00.html&filelD=2489, August 2002. Copy on
CD-Rom; Series_60_App_Framework_Handbook.pdf.

NOKIA: Developer Platform 1.0 for Series 60: Getting
Started with C++ Application Development. URL, http:
//www.forum.nokia.com/main/1,6566,040,00.html?fsrParam=2-3-/
main.html&filelD=3922, November 2003. Copy on CD-Rom;
DP_1_0_for_S60_Getting_Started_v1_0_en.pdf.

NoxkiA: Developer Platform 2.0 for Series 60: Designing C++ Appli-
cations. URL, http://www.forum.nokia.com/main/0,6566,040,00.html|?
fsrParam=1-3-&filelD=3773, October 2003. Copy on CD-Rom; Series_
60_Designing_CPP_Applications.pdf.

35

BIBLIOGRAPHY 36

[9]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

NokIA: Series 60 Developer Platform 1.0/2.0: Programming Games
in C++. URL, http://www.forum.nokia.com/main/0,6566,040,00.html|?
fsrParam=1-3-&filelD=4542, March 2004. Copy on CD-Rom; Series_60_
Developer_Platform_1_0_2_0_Programming_Games_v1_0_en.pdf.

NoOKIA: Series 60 Developer Platform 2.0: Usability Guidelines
For Symbian C++ Games. URL, http://www.forum.nokia.com/main/
1,,040,00.htmI?fsrParam=3-3- /main.html&filelD=4624, March 2004.
Copy on CD-Rom; Series_ 60_DP_2_0_Usability_Guidelines_For_Symbian_
Games_v1_0_en.pdf.

NokiA: Series 60 SDK for Symbian OS, 2004. Copy on CD-Rom;
help.chm.

PyssysaLo, T.: Programming for the Series 60 Platform and Symbian
0S. John Wiley and Sons Ltd, February 2003.

SENDO: Sendo Developers — Glossary. URL, http://www.sendo.com/
kb/glossary.aspx, 2004. Copy on CD-Rom; Sendo_Glossary_Index*.pdf.

SYMBIAN: LeaveScan Utility. URL, http://www3.symbian.com/faq.
nsf/0/F3765F69E4FBOBAAB0256A570051B95270penDocument, August
1999. Copy on CD-Rom; LeaveScan.pdf.

SYMBIAN: Coding idioms for Symbian OS. URL, http://www.symbian.
com/developer/techlib/papers/cpp_gettingstarted.html#two, October
2002. Copy on CD-Rom; 2002_10_09_codingSymbianOS.pdf.

SYMBIAN: Writing Good Symbian OS Applications. URL, http://www.
symbian.com/developer/techlib/papers/goodapplications/goodapps.html,
May 2004. Copy on CD-Rom; WritingGoodSymbianOSApps.pdf.

WEINSTEIN, A.: Symbian OS C++ for Windows C++ program-
mers. URL, http://www.symbian.com/developer/techlib/papers/cpp-
migrating.html#three, October 2002. Copy on CD-Rom; Windows_
SymbianOS.pdf.

